Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Nat Commun ; 15(1): 2717, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548737

ABSTRACT

Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium Infections, Nontuberculous/microbiology , Macrolides , Phylogeny , Persistent Infection , Reinfection , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests
2.
Int J Med Microbiol ; 314: 151599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290400

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic analysis has been key to the provision of valuable data to meet both epidemiological and clinical demands. High-throughput sequencing, generally Illumina-based, has been necessary to ensure the widest coverage in global variant tracking. However, a speedier response is needed for nosocomial outbreak analyses and rapid identification of patients infected by emerging VOCs. An alternative based on nanopore sequencing may be better suited to delivering a faster response when required; however, although there are several studies offering side-by-side comparisons of Illumina and nanopore sequencing, evaluations of the usefulness in the hospital routine of the faster availability of data provided by nanopore are still lacking. RESULTS: We performed a prospective 10-week nanopore-based sequencing in MinION in a routine laboratory setting, including 83 specimens where a faster response time was necessary. The specimens analyzed corresponded to i) international travellers in which lineages were assigned to determine the proper management/special isolation of the patients; ii) nosocomial infections and health-care-worker infections, where SNP-based comparisons were required to rule in/out epidemiological relationships and tailor specific interventions iii) sentinel cases and breakthrough infections to timely report to the Public Health authorities. MinION-based sequencing was compared with the standard procedures, supported on Illumina sequencing; MinION accelerated the delivery of results (anticipating results 1-12 days) and reduced costs per sample by 28€ compared to Illumina, without reducing accuracy in SNP calling. CONCLUSIONS: Parallel integration of Illumina and nanopore sequencing strategies is a suitable solution to ensure both high-throughput and rapid response to cope with accelerating the surveillance demands of SARS-CoV-2 while also maintaining accuracy.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Nanopore Sequencing/methods , Prospective Studies , Genomics/methods
3.
Microb Genom ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38226969

ABSTRACT

Recombination events between Delta and Omicron SARS-CoV-2 lineages highlight the need for co-infection research. Existing studies focus on late-phase co-infections, with few examining earlier pandemic stages. This new study aims to globally identify and characterize co-infections using a bioinformatic pipeline to analyse genomic data from diverse locations and pandemic phases. Among 26988 high-quality SARS-CoV-2 isolates from 11 diverse project databases, we identified 141 potential co-infection cases (0.52%), surpassing previous prevalence estimates. These co-infections were observed throughout the pandemic timeline, with an increase noted after the emergence of the Omicron variant. Co-infections involving the Omicron variant were the most prevalent, potentially influenced by the high level of diversity within this lineage and its impact on the viral landscape. Additionally, we found co-infections involving the pre-Alpha/Alpha lineages, which have been rarely described, raising possibilities of contributing to new lineage emergence through recombination events. The analysis revealed co-infection cases involving both different and the same lineages/sublineages. Our study showcases the potential of our pipeline to leverage valuable information stored in global sequence repositories, advancing our understanding of SARS-CoV-2 co-infections. The prevalence of co-infections highlights the importance of monitoring viral diversity and its potential implications on disease dynamics. Integrating clinical data with genomic findings can further shed light on the clinical implications and outcomes of co-infections.


Subject(s)
COVID-19 , Coinfection , Humans , Coinfection/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics
5.
Microbiol Spectr ; : e0107523, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737624

ABSTRACT

During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOCs) of particular relevance emerged. Early detection of VOCs entering a country is essential to control spread. The alert triggered by the first suspected case of the Omicron variant in Spain in a traveler arriving from South Africa in November 2021 provided a unique opportunity to evaluate four different methodological strategies tailored to rapid identification of Omicron. The different approaches were designed to respond to the different technical resources available in different settings. First, we used melting probes in RT-PCR to determine the presence of four Omicron signatures (K417N, E484A, P681H, and absence of L452R): three probes showed deviations in temperature (Tm) values relative to the reference codons (E484K-15.8°C, P681H-5.2°C, and L452R-7.2°C) and one maintained the reference value (K417N). The deviation in Tm of P681H suggested the presence of the characteristic Omicron N679K mutation in the probe hybridization region; these data pointed to the presence of Omicron alleles. Second, the presence of 29 of the 33 characteristic single nucleotide polymorphisms (SNPs) in the Omicron variant S-gene was identified by Sanger sequencing of nine amplicons. The final two strategies involved identification of 47 of the 50 non-synonymous and indel mutations attributed to Omicron by rapid nanopore whole genome sequencing (WGS) and by Illumina WGS technology. These strategies enabled us to pre-assign the first Omicron case in Spain with high certainty 2 h after receipt of RNA and to confirm it genomically 3 h later, so that the Public Health authorities could be rapidly notified. IMPORTANCE The study presents different experimental alternatives to identify new variants of concern (VOCs) of SARS-CoV-2 entering a certain population. Early detection of a new VOC is crucial for surveillance and control of spread. The objective is to provide laboratories with tools adapted to their resource capabilities that offer a sufficient level of resolution to rule out, confirm, or pre-assign the presence of a suspected VOC. The study describes four different techniques that were applied simultaneously to the first suspected Omicron case in Spain, highlighting the level of resolution and response time achieved in each case. These techniques are based on the detection of mutations in the S-gene of the virus that can easily adapt to potential emerging variants. The results of the study allow any laboratory to prepare for new alerts of SARS-CoV-2 VOCs.

6.
Genome Med ; 15(1): 57, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488638

ABSTRACT

BACKGROUND: SARS-CoV-2 recombinants involving the divergent Delta and Omicron lineages have been described, and one of them, "Kraken" (XBB.1.5), has recently been a matter of concern. Recombination requires the coexistence of two SARS-CoV-2 strains in the same individual. Only a limited number of studies have focused on the identification of co-infections and are restricted to co-infections involving the Delta/Omicron lineages. METHODS: We performed a systematic identification of SARS-CoV-2 co-infections throughout the pandemic (7609 different patients sequenced), not biassed towards the involvement of highly divergent lineages. Through a comprehensive set of validations based on the distribution of allelic frequencies, phylogenetic consistency, re-sequencing, host genetic analysis and contextual epidemiological analysis, these co-infections were robustly assigned. RESULTS: Fourteen (0.18%) co-infections with ≥ 8 heterozygous calls (8-85 HZs) were identified. Co-infections were identified throughout the pandemic and involved an equal proportion of strains from different lineages/sublineages (including pre-Alpha variants, Delta and Omicron) or strains from the same lineage. Co-infected cases were mainly unvaccinated, with mild or asymptomatic clinical presentation, and most were at risk of overexposure associated with the healthcare environment. Strain segregation enabled integration of sequences to clarify nosocomial outbreaks where analysis had been impaired due to co-infection. CONCLUSIONS: Co-infection cases were identified throughout the pandemic, not just in the time periods when highly divergent lineages were co-circulating. Co-infections involving different lineages or strains from the same lineage were occurring in the same proportion. Most cases were mild, did not require medical assistance and were not vaccinated, and a large proportion were associated with the hospital environment.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2/genetics , Pandemics , Phylogeny , COVID-19/epidemiology , Genomics
7.
BMC Microbiol ; 23(1): 190, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460980

ABSTRACT

BACKGROUND: COVID-19 diagnosis lies on the detection of SARS-CoV-2 on nasopharyngeal specimens by RT-PCR. The Xpert-Xpress SARS-CoV-2 assay provides results in less than one hour from specimen reception, which makes it suitable for clinical/epidemiological circumstances that require faster responses. The analysis of a COVID-19 outbreak suspected in the neonatology ward from our institution showed that the Ct values obtained for the targeted genes in the Xpert assay were markedly different within each specimen (N Ct value > 20 cycles above the E Ct value). RESULTS: We identified the mutation C29200T in the N gene as responsible for an impairment in the N gene amplification by performing whole genome sequencing of the specimens involved in the outbreak (Omicron variant). Subsequently, a retrospective analysis of all specimens sequenced in our institution allowed us to identify the same SNP as responsible for similar impairments in another 12 cases (42% of the total cases reported in the literature). Finally, we found that the same SNP emerged in five different lineages independently, throughout almost all the COVID-19 pandemic. CONCLUSIONS: We demonstrated for the first time the impact of this SNP on the Xpert assay, when harbored by new Omicron variants. We extend our observation period throughout almost all the COVID-19 pandemic, offering the most updated observations of this phenomenon, including sequences from the seventh pandemic wave, until now absent in the reports related to this issue. Continuous monitoring of emerging SNPs that could affect the performance of the most commonly used diagnostic tests, is required to redesign the tests to restore their correct performance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Pandemics , Clinical Laboratory Techniques/methods , Retrospective Studies , Sensitivity and Specificity , Mutation
8.
Antimicrob Agents Chemother ; 67(7): e0026623, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37278655

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 represented a challenge to the treatment of COVID-19 using monoclonal antibodies. Only Sotrovimab maintained partial activity, allowing it to be used in high-risk patients infected with the Omicron variant. However, reports of resistance mutations to Sotrovimab demand efforts to better understand the intra-patient emergence of Sotrovimab resistance. A retrospective genomic analysis was conducted on respiratory samples from immunocompromised patients infected with SARS-CoV-2 who received Sotrovimab at our hospital between December 2021 and August 2022. The study involved 95 sequential specimens from 22 patients (1 to 12 samples/patient; 3 to 107 days post-infusion; threshold cycle [CT] ≤ 32). Resistance mutations (in P337, E340, K356, and R346) were detected in 68% of cases; the shortest time to detection of a resistance mutation was 5 days after Sotrovimab infusion. The dynamics of resistance acquisition were highly complex, with up to 11 distinct amino acid changes in specimens from the same patient. In two patients, the mutation distribution was compartmentalized in respiratory samples from different sources. This is the first study to examine the acquisition of Sotrovimab resistance in the BA.5 lineage, enabling us to determine the lack of genomic or clinical differences between Sotrovimab resistance in BA.5 relative to that in BA.1/2. Across all Omicron lineages, the acquisition of resistance delayed SARS-CoV-2 clearance (40.67 versus 19.5 days). Close, real-time genomic surveillance of patients receiving Sotrovimab should be mandatory to facilitate early therapeutic interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Genomics , Mutation , Antibodies, Neutralizing
9.
Emerg Infect Dis ; 29(6): 1154-1161, 2023 06.
Article in English | MEDLINE | ID: mdl-37130503

ABSTRACT

Centers for Disease Control and Prevention guidelines consider SARS-CoV-2 reinfection when sequential COVID-19 episodes occur >90 days apart. However, genomic diversity acquired over recent COVID-19 waves could mean previous infection provides insufficient cross-protection. We used genomic analysis to assess the percentage of early reinfections in a sample of 26 patients with 2 COVID-19 episodes separated by 20-45 days. Among sampled patients, 11 (42%) had reinfections involving different SARS-CoV-2 variants or subvariants. Another 4 cases were probable reinfections; 3 involved different strains from the same lineage or sublineage. Host genomic analysis confirmed the 2 sequential specimens belonged to the same patient. Among all reinfections, 36.4% involved non-Omicron, then Omicron lineages. Early reinfections showed no specific clinical patterns; 45% were among unvaccinated or incompletely vaccinated persons, 27% were among persons <18 years of age, and 64% of patients had no risk factors. Time between sequential positive SARS-CoV-2 PCRs to consider reinfection should be re-evaluated.


Subject(s)
COVID-19 , Reinfection , United States , Humans , SARS-CoV-2/genetics , Spain/epidemiology , Genomics , Risk Factors
10.
Euro Surveill ; 28(12)2023 03.
Article in English | MEDLINE | ID: mdl-36951787

ABSTRACT

IntroductionMycobacterium caprae is a member of the Mycobacterium tuberculosis complex (MTBC) not routinely identified to species level. It lacks specific clinical features of presentation and may therefore not be identified as the causative agent of tuberculosis. Use of whole genome sequencing (WGS) in the investigation of a family microepidemic of tuberculosis in Almería, Spain, unexpectedly identified the involvement of M. caprae.AimWe aimed to evaluate the presence of additional unidentified M. caprae cases and to determine the magnitude of this occurrence.MethodsFirst-line characterisation of the MTBC isolates was done by MIRU-VNTR, followed by WGS. Human and animal M. caprae isolates were integrated in the analysis.ResultsA comprehensive One Health strategy allowed us to (i) detect other 11 M. caprae infections in humans in a period of 18 years, (ii) systematically analyse M. caprae infections on an epidemiologically related goat farm and (iii) geographically expand the study by including 16 M. caprae isolates from other provinces. Integrative genomic analysis of 41 human and animal M. caprae isolates showed a high diversity of strains. The animal isolates' diversity was compatible with long-term infection, and close genomic relationships existed between isolates from goats on the farm and recent cases of M. caprae infection in humans.DiscussionZoonotic circulation of M. caprae strains had gone unnoticed for 18 years. Systematic characterisation of MTBC at species level and/or extended investigation of the possible sources of exposure in all tuberculosis cases would minimise the risk of overlooking similar zoonotic events.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium , One Health , Tuberculosis , Animals , Humans , Spain/epidemiology , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/microbiology , Mycobacterium/genetics , Genomics
11.
Microbiol Spectr ; : e0282622, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786614

ABSTRACT

Outbreak strains of Mycobacterium tuberculosis are promising candidates as targets in the search for intrinsic determinants of transmissibility, as they are responsible for many cases with sustained transmission; however, the use of low-resolution typing methods and restricted geographical investigations represent flaws in assessing the success of long-lived outbreak strains. We can now address the nature of outbreak strains by combining large genomic data sets and phylodynamic approaches. We retrospectively sequenced the whole genome of representative samples assigned to an outbreak circulating in the Canary Islands (the GC strain) since 1993, which accounts for ~20% of local tuberculosis cases. We selected a panel of specific single nucleotide polymorphism (SNP) markers for an in-silico search for additional outbreak-related sequences within publicly available tuberculosis genomic data. Using this information, we inferred the origin, spread, and epidemiological parameters of the GC strain. Our approach allowed us to accurately trace the historical and more recent dispersion of the GC strain. We provide evidence of a highly successful nature within the Canarian archipelago but limited expansion abroad. Estimation of epidemiological parameters from genomic data disagree with a distinctive biology of the GC strain. With the increasing availability of genomic data allowing for the accurate inference of strain spread and critical epidemiological parameters, we can now revisit the link between Mycobacterium tuberculosis genotypes and transmission, as is routinely carried out for SARS-CoV-2 variants of concern. We demonstrate that social determinants rather than intrinsically higher bacterial transmissibility better explain the success of the GC strain. Importantly, our approach can be used to trace and characterize strains of interest worldwide. IMPORTANCE Infectious disease outbreaks represent a significant problem for public health. Tracing outbreak expansion and understanding the main factors behind emergence and persistence remain critical to effective disease control. Our study allows researchers and public health authorities to use Whole-Genome Sequencing-based methods to trace outbreaks, and shows how available epidemiological information helps to evaluate the factors underpinning outbreak persistence. Taking advantage of all the freely available information placed in public repositories, researchers can accurately establish the expansion of an outbreak beyond original boundaries, and determine the potential risk of a strain to inform health authorities which, in turn, can define target strategies to mitigate expansion and persistence. Finally, we show the need to evaluate strain transmissibility in different geographic contexts to unequivocally associate spread to local or pathogenic factors, an important lesson taken from genomic surveillance of SARS-CoV-2.

12.
Microbiol Spectr ; 11(1): e0419622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36602352

ABSTRACT

Despite the proven value of applying genomic data for epidemiological purposes, commonly used high-throughput sequencing formats are not adapted to the response times required to intervene and finally control outbreaks. In this study, we propose a fast alternative to whole-genome sequencing (WGS) to track relevant microbiological strains: nanopore sequencing of multiple amplicons including strain marker single nucleotide polymorphisms (SNPs). As a proof a concept, we evaluated the performance of our approach to offer a rapid response to the most recent public health global alarm, the monkeypox virus (MPXV) global outbreak. Through a multisequence alignment, a list of 42 SNPs were extracted as signature makers for this outbreak. Twenty primer pairs were designed to amplify in a multiplex PCR the regions including 22 of these SNPs. Amplicon pools were sequenced in a MinION device, and SNPs were called in real time by an in-house bioinformatic pipeline. A total of 120 specimens (95 MPXV-PCR positive, Ct values from 14 to 39) were selected. In 67.37% of the positive subset, all 22 SNPs were called. After excluding low viral load specimens, in 92% of samples ≥11 outbreak SNPs were called. No false positives were observed in any of the 25 negative specimens. The total turnaround time required for this strategy was 5 hours, and the cost per sample was 14 euros. Nanopore sequencing of multiple amplicons harboring signature SNPs escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic WGS, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control. IMPORTANCE Nanopore sequencing of multiple amplicons harboring signature single nucleotide polymorphisms (SNPs) escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic whole-genome analysis, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control.


Subject(s)
Monkeypox virus , Polymorphism, Single Nucleotide , Monkeypox virus/genetics , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Multiplex Polymerase Chain Reaction
13.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(10): 546-549, 2022 12.
Article in English | MEDLINE | ID: mdl-36464472

ABSTRACT

INTRODUCTION: A newly identified SARS-CoV-2 variant, VOC202012/01 originating lineage B.1.1.7, recently emerged in the United Kingdom. The rapid spread in the UK of this new variant has caused other countries to be vigilant. MATERIAL AND METHODS: We based our initial screening of B.1.1.7 on the dropout of the S gene signal in the TaqPath assay, caused by the 69/70 deletion. Subsequently, we confirmed the B.1.1.7 candidates by whole genome sequencing. RESULTS: We describe the first three imported cases of this variant from London to Madrid, subsequent post-arrival household transmission to three relatives, and the two first cases without epidemiological links to UK. One case required hospitalization. In all cases, drop-out of gene S was correctly associated to the B.1.1.7 variant, as all the corresponding sequences carried the 17 lineage-marker mutations. CONCLUSION: The first identifications of the SARS-CoV-2 B.1.1.7 variant in Spain indicate the role of independent introductions from the UK coexisting with post-arrival transmission in the community, since the early steps of this new variant in our country.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spain/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Hospitalization
15.
Euro Surveill ; 27(33)2022 08.
Article in English | MEDLINE | ID: mdl-35983771

ABSTRACT

A monkeypox virus (MPXV) outbreak has been ongoing worldwide since May 2022. The role of specimens other than skin lesions for MPXV diagnosis is unknown. We evaluated 140 different clinical specimens by real-time PCR. The highest positivity rates (97%) were from skin lesions of any part of the body, followed by plasma, pharyngeal and anal swabs. Testing specimens from multiple sites may improve the sensitivity and reduce false-negative test results.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Disease Outbreaks , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Pharynx , Spain/epidemiology
16.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(5): 262-265, 2022 05.
Article in English | MEDLINE | ID: mdl-35577445

ABSTRACT

INTRODUCTION: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed. METHODS: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population. RESULTS: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissions CONCLUSION: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Spain/epidemiology
17.
Article in English | IBECS | ID: ibc-203502

ABSTRACT

Introduction: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed.Methods: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population.Results: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissionsConclusion: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Introducción: Se han descrito «variantes de preocupación» (VOC) de SARS-CoV-2 en el Reino Unido (B.1.1.7), Sudáfrica (B.1.351) y Brasil (P.1). Entre ellas, se dispone de información más escasa para la variante P.1 y se necesitan más datos sobre su presencia global y sobre su dinámica de expansión.Métodos: Se realizó secuenciación del genoma completo de forma prospectiva de SARS-CoV-2 en viajeros procedentes de Brasil y en una selección aleatoria de casos positivos de SARS-CoV-2 de nuestra población.Resultados: En este estudio reportamos las primeras variantes de SARS-CoV-2 P.1 y P.2 exportadas desde Brasil a España. El caso infectado por la variante P.1, que solo había permanecido en Río de Janeiro, requirió hospitalización. Los 2 casos de la variante P.2 permanecieron asintomáticos. Se debe considerar una distribución más amplia para la variante P.1 más allá de la Amazonía brasileña. La exportación de la variante P.2, que porta la mutación E484K, merece asimismo atención adicional. Un mes después de la primera descripción de las importaciones de P.1 y P.2 de Brasil a Madrid, se identificaron estas variantes circulando en la comunidad, en casos sin antecedentes de viaje, e implicadas en transmisiones domiciliarias.Conclusión: La secuenciación de genoma completo de viajeros positivos para SARS-CoV-2 procedentes de Brasil nos permitió identificar las primeras importaciones de variantes P.1 y P.2 a España y su transmisión comunitaria precoz.


Subject(s)
Humans , Health Sciences , Brazil/epidemiology , Disease Transmission, Infectious/prevention & control , Betacoronavirus/genetics , Whole Genome Sequencing , Sanitary Control of Travelers , Epidemiology , Communicable Diseases
18.
Microbiol Spectr ; 10(1): e0138121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35044196

ABSTRACT

Genotyping tools help identify the complexity in Mycobacterium tuberculosis transmission clusters. We carried out a thorough analysis of the epidemiological and bacteriological complexity of a cluster in Almería, Spain. The cluster, initially associated with Moroccan migrants and with no secondary cases identified in 4 years, then reappeared in Spanish-born individuals. In one case, two Mycobacterium tuberculosis clonal variants were identified. We reanalyzed the cluster, supported by the characterization of multiple cultured isolates and respiratory specimens, whole-genome sequencing, and epidemiological case interviews. Our findings showed that the cluster, which was initially thought to have restarted activity with just a single case harboring a small degree of within-host diversity, was in fact currently growing due to coincidental reactivation of past exposures, with clonal diversity transmitted throughout the cluster. In one case, within-host diversity was amplified, probably due to prolonged diagnostic delay. IMPORTANCE The precise study of the dynamics of tuberculosis transmission in socio-epidemiologically complex scenarios may require more thorough analysis than the standard molecular epidemiology strategies. Our study illustrates the epidemiological and bacteriological complexity present in a transmission cluster in a challenging epidemiological setting with a high proportion of migrant cases. The combination of whole-genome sequencing, refined and refocused epidemiological interviews, and in-depth analysis of the bacterial composition of sputa and cultured isolates was crucial in order to correctly reinterpret the true nature of this cluster. Our global approach allowed us to reinterpret correctly the unnoticed epidemiological and bacteriological complexity involved in the Mycobacterium tuberculosis transmission event under study, which had been overlooked by the usual molecular epidemiology approaches.


Subject(s)
Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Tuberculosis/transmission , Bacterial Proteins/genetics , Genome, Bacterial , Genotype , Humans , Minisatellite Repeats , Morocco , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/physiology , Roma , Spain/epidemiology , Spain/ethnology , Transients and Migrants/statistics & numerical data , Travel , Tuberculosis/epidemiology , Whole Genome Sequencing
19.
Microbiol Spectr ; 10(1): e0153221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34985301

ABSTRACT

COVID-19 vaccination has proven to be effective at preventing symptomatic disease but there are scarce data to fully understand whether vaccinated individuals can still behave as SARS-CoV-2 transmission vectors. Based on viral genome sequencing and detailed epidemiological interviews, we report a nosocomial transmission event involving two vaccinated health care-workers (HCWs) and four patients, one of them with fatal outcome. Strict transmission control measures, as during the prevaccination period, must be kept between HCWs and HCWs-patients in nosocomial settings. IMPORTANCE COVID-19 vaccination has proven to be effective at preventing symptomatic disease. Although some transmission events involving vaccinated cases have also been reported, scarce information is still available to fully understand whether vaccinated individuals may still behave as vectors in SARS-CoV-2 transmission events. Here, we report a SARS-CoV-2 nosocomial transmission event, supported on whole genome sequencing, in early March 2021 involving two vaccinated HCWs and four patients in our institution. Strict transmission control measures between HCWs and HCWs - patients in nosocomial settings must not be relaxed, and should be kept as strictly as during the prevaccination period.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Infection/transmission , SARS-CoV-2/immunology , COVID-19/transmission , COVID-19/virology , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/virology , Health Personnel/statistics & numerical data , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Vaccination , Whole Genome Sequencing
20.
Enferm Infecc Microbiol Clin ; 40(5): 262-265, 2022 May.
Article in English | MEDLINE | ID: mdl-34099945

ABSTRACT

Introduction: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed. Methods: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population. Results: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissions. Conclusion: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Introducción: Se han descrito «variantes de preocupación¼ (VOC) de SARS-CoV-2 en el Reino Unido (B.1.1.7), Sudáfrica (B.1.351) y Brasil (P.1). Entre ellas, se dispone de información más escasa para la variante P.1 y se necesitan más datos sobre su presencia global y sobre su dinámica de expansión. Métodos: Se realizó secuenciación del genoma completo de forma prospectiva de SARS-CoV-2 en viajeros procedentes de Brasil y en una selección aleatoria de casos positivos de SARS-CoV-2 de nuestra población. Resultados: En este estudio reportamos las primeras variantes de SARS-CoV-2 P.1 y P.2 exportadas desde Brasil a España. El caso infectado por la variante P.1, que solo había permanecido en Río de Janeiro, requirió hospitalización. Los 2 casos de la variante P.2 permanecieron asintomáticos. Se debe considerar una distribución más amplia para la variante P.1 más allá de la Amazonía brasileña. La exportación de la variante P.2, que porta la mutación E484K, merece asimismo atención adicional. Un mes después de la primera descripción de las importaciones de P.1 y P.2 de Brasil a Madrid, se identificaron estas variantes circulando en la comunidad, en casos sin antecedentes de viaje, e implicadas en transmisiones domiciliarias. Conclusión: La secuenciación de genoma completo de viajeros positivos para SARS-CoV-2 procedentes de Brasil nos permitió identificar las primeras importaciones de variantes P.1 y P.2 a España y su transmisión comunitaria precoz.

SELECTION OF CITATIONS
SEARCH DETAIL
...